Nanostructured Architectures by Assembling Polysaccharide-Coated BSA Nanoparticles for Biomedical Application.

نویسندگان

  • Zhenming Wang
  • Kefeng Wang
  • Xiong Lu
  • Chen Li
  • Lu Han
  • Chaoming Xie
  • Yaling Liu
  • Shuxin Qu
  • Guanming Zhen
چکیده

Nanostructured architectures are produced on Ti surfaces by layer-by layer (LbL) self-assembling of polysaccharide-coated BSA nanoparticles (BNPs), which created cellular microenvironments mimicking natural extracellular matrix. The BMP-2 encapsulated BNPs are prepared by a desolvation method, and are further coated by chitosan (CHI) coatings to obtain positively charged NPs (CBNPs). Vancomycin (Van) encapsulated CBNPs are obtained by the same method and subsequently coated by oxidized alginate (OALG) to obtain negatively charged NPs (OCBNPs). The CBNPs and OCBNPs are assembled on Ti surfaces to construct nanostructured coatings via electrostatic and covalent interactions. The nanostructured architectures realize the sustained release of BMP-2 and Van for a long term. Bone marrow stromal cells (BMSCs) culture tests confirm that the bare nanostructured architectures intrinsically facilitate attachment, proliferation, and differentiation of cells, which is attributed to the nanoscale porous structures that are similar to the size of cellular filopodia. Incorporating BMP-2 into the nanostructured architectures significantly enhances osteogenetic differentiation of BMSCs, which reveals the synergistic effects of nanostructures and growth factors on cell activity. The antibacterial tests indicate that controlled release of Van has good antibacterial ability against Staphylococcus epidermidis, while not affecting the normal biological activity of BMSCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

Preparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application

Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...

متن کامل

BSA nanoparticles loaded with IONPs for biomedical applications: fabrication optimization, physicochemical characterization and biocompatibility evaluation

Objective(s): Cancer diagnosis in its early stages of progress, can enhance the efficiency of treatment utilizing conventional therapy methods. Non-biocompatibility of iron oxide nanoparticles (IONPs) has made a big challenge against their usage as a contrast agent. Efficient coverage by biomolecules such as albumin can be a solution to overcome this problem. Herein, albumin-coated IONPs were p...

متن کامل

Synthesis and characterization of Cu nanoparticles and studying of their catalytic properties

In this paper, we report on the synthesis of Cu nanoparticles through a single-precursor route by controlling the growth temperature. Selective adsorption of oleylamine on various crystal planes may play an important role in the growth process. The understanding of this self-assembling process will help us develop reliable and reproducible methods to synthesis other three dimensional nanostruct...

متن کامل

Synthesis and characterization of Cu nanoparticles and studying of their catalytic properties

In this paper, we report on the synthesis of Cu nanoparticles through a single-precursor route by controlling the growth temperature. Selective adsorption of oleylamine on various crystal planes may play an important role in the growth process. The understanding of this self-assembling process will help us develop reliable and reproducible methods to synthesis other three dimensional nanostruct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Advanced healthcare materials

دوره 4 6  شماره 

صفحات  -

تاریخ انتشار 2015